Necessary and sufficient conditions for the existence of -determinantal processes

نویسنده

  • Franck Maunoury
چکیده

We give necessary and sufficient conditions for existence and infinite divisibility of α-determinantal processes. For that purpose we use results on negative binomial and ordinary binomial multivariate distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Construction of Particle Distributions with Specified Single and Pair Densities†

We discuss necessary conditions for the existence of a probability distribution on particle configurations in d-dimensions, i.e., a point process, compatible with a specified density F and radial distribution function g(r). In d ) 1 we give necessary and sufficient criteria on Fg(r) for the existence of such a point process of renewal (Markov) type. We prove that these conditions are satisfied ...

متن کامل

Stationary Determinantal Processes : Phase Transitions , Bernoullicity , Entropy , and Domination by

We study a class of stationary processes indexed by Z that are defined via minors of d-dimensional Toeplitz matrices. We obtain necessary and sufficient conditions for the existence of a phase transition (phase multiplicity) analogous to that which occurs in statistical mechanics. The absence of a phase transition is equivalent to the presence of a strong K property, a particular strengthening ...

متن کامل

Stationary determinantal processes: Phase transitions, Bernoullicity, domination, and entropy

We study a class of stationary processes indexed by Z that are defined via minors of d-dimensional (multilevel) Toeplitz matrices. We obtain necessary and sufficient conditions for phase multiplicity (the existence of a phase transition) analogous to that which occurs in statistical mechanics. Phase uniqueness is equivalent to the presence of a strong K property, a particular strengthening of t...

متن کامل

Stationary Determinantal Processes : Phase Transitions , Bernoullicity , Entropy , and Domination

We study a class of stationary processes indexed by Z that are defined via minors of d-dimensional Toeplitz matrices. We obtain necessary and sufficient conditions for the existence of a phase transition (phase multiplicity) analogous to that which occurs in statistical mechanics. The absence of a phase transition is equivalent to the presence of a strong K property, a particular strengthening ...

متن کامل

Stationary Determinantal Processes: Phase Multiplicity, Bernoullicity, Entropy, and Domination

We study a class of stationary processes indexed by Z that are defined via minors of d-dimensional (multilevel) Toeplitz matrices. We obtain necessary and sufficient conditions for phase multiplicity (the existence of a phase transition) analogous to that which occurs in statistical mechanics. Phase uniqueness is equivalent to the presence of a strong K property, a particular strengthening of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017